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Abrupt cessation of alcohol intake after prolonged heavy drinking
may trigger alcohol withdrawal seizures. Generalized tonic–clonic
seizures are the most characteristic and severe type of seizure that oc-
cur in this setting. Generalized seizures also occur in rodent models
of alcohol withdrawal. In these models, the withdrawal seizures are
triggered by neuronal networks in the brainstem, including the in-
ferior colliculus; similar brainstem mechanisms may contribute to
alcohol withdrawal seizures in humans. Alcohol causes intoxication
through effects on diverse ion channels and neurotransmitter recep-
tors, including GABAA receptors—particularly those containing
δ subunits that are localized extrasynaptically and mediate tonic
inhibition—and N-methyl-D-aspartate (NMDA) receptors. Alco-
hol dependence results from compensatory changes during prolonged
alcohol exposure, including internalization of GABAA receptors,
which allows adaptation to these effects. Withdrawal seizures are
believed to reflect unmasking of these changes and may also involve
specific withdrawal-induced cellular events, such as rapid increases
in α4 subunit–containing GABAA receptors that confer reduced
inhibitory function. Optimizing approaches to the prevention of
alcohol withdrawal seizures requires an understanding of the dis-
tinct neurobiologic mechanisms that underlie these seizures.

It is estimated that 2 million Americans experience the
symptoms of alcohol withdrawal each year (1). Generalized
tonic–clonic seizures (rum fits) are the most dramatic and dan-
gerous component of the alcohol withdrawal syndrome. The
brain substrates that trigger these seizures are largely in the
brainstem and, therefore, are distinct from those believed to be
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responsible for other clinically important seizure types. More-
over, because alcohol withdrawal seizures are pharmacologically
induced, the pathophysiologic mechanisms almost certainly are
different from those of the seizures that occur in genetic and
acquired epilepsies. This review provides an overview of the
current understanding of the cellular and molecular events that
lead to alcohol withdrawal seizures.

Ethanol is a central nervous system depressant that pro-
duces euphoria and behavioral excitation at low blood con-
centrations and acute intoxication (drowsiness, ataxia, slurred
speech, stupor, and coma) at higher concentrations. The short-
term effects of alcohol result from its actions on ligand-gated
and voltage-gated ion channels (2–4). Prolonged alcohol con-
sumption leads to the development of tolerance and physical
dependence, which may result from compensatory functional
changes in the same ion channels. Abrupt cessation of pro-
longed alcohol consumption unmasks these changes, leading
to the alcohol withdrawal syndrome, which includes blackouts,
tremors, muscular rigidity, delirium tremens, and seizures (5,6).
Alcohol withdrawal seizures typically occur 6 to 48 hours after
discontinuation of alcohol consumption and are usually gener-
alized tonic–clonic seizures, although partial seizures also occur
(7,8).

Rodent models that mimic human alcohol withdrawal–
related tonic–clonic seizures have been useful in defining
the physiologic mechanisms underlying ethanol withdrawal
seizures (9). In these models, animals are exposed to alcohol
by intragastric intubation, inhalation, or feeding in a nutrition-
ally complete liquid diet for periods of 2 to 21 days. The animals
exhibit sound-evoked audiogenic seizures or handling-induced
convulsions during the 1- to 3-day period after cessation of al-
cohol intake and may also experience spontaneous generalized
seizures.

Brain Substrates for Alcohol Withdrawal Seizures

Audiogenic seizures are the best-studied type of alcohol with-
drawal seizures. These seizures are mediated largely in the brain-
stem, although the hippocampus may be invaded after seizure
initiation (10). In rodents, the cortical EEG shows no sign of
paroxysmal activity (10,11). Similarly, in humans, epileptiform
activity is rarely observed in the EEG between episodes of alco-
hol withdrawal–related tonic–clonic seizures (12,13). Thus, al-
cohol withdrawal seizures are unlikely to be triggered in the neo-
cortex. Indeed, electrophysiological studies have demonstrated
a critical role for the inferior colliculus (IC) in the initiation
of audiogenic seizures in rodents. Acute alcohol intoxication
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suppresses spontaneously and acoustically evoked neuronal fir-
ing in the IC central nucleus (14), whereas at the transition to
seizure, sustained increases in firing persist during wild running,
the initial phase of the seizure (15). The IC external cortex is
believed to amplify and propagate neuronal activity originating
in the IC central nucleus. Neurons within the deep layers of
the superior colliculus (16) and the periaqueductal gray (17)
also may play a role in the initiation of audiogenic seizures. It
is hypothesized that seizure activity propagates from the IC to
deep layers of the superior colliculus (a major output of the IC)
to trigger the wild running phase of the audiogenic seizure. The
deep layers of the superior colliculus send projections directly
to the spinal cord via the pontine reticular formation and the
periaqueductal gray. The periaqueductal gray is thought to trig-
ger clonic seizures, whereas the pontine reticular formation is
implicated in the generation of the tonic phase of audiogenic
seizures (18). Some evidence suggests that the IC plays a role
in alcohol withdrawal seizures in humans, as it does in rodents.
Thus, humans with alcohol withdrawal seizures exhibit abnor-
malities in auditory-evoked potentials that are not observed in
other settings, including increased latency to wave V (19,20),
whose major source is the IC (21).

Cellular Mechanisms of Alcohol Dependence

Until the 1980s, it was generally believed that the actions of
ethanol on biologic systems largely result from alterations in the
fluidity of cell membranes, perhaps, with secondary effects on
integral membrane proteins. This idea arose from the recogni-
tion that ethanol is a member of a group of anesthetic substances
whose potency is related to their lipid solubility in accordance
with the Meyer–Overton rule (22). More recently, it has been
appreciated that some anesthetic actions are stereospecific and
that direct protein interactions are likely (23). Indeed, ethanol
modifies the functional activity of many receptors and ion chan-
nels, including NMDA (24,25), kainate (26), serotonin 5-HT3

(27), GABAA (28), and glycine (29) receptors as well as G
protein–coupled inwardly rectifying potassium channels (30)
and calcium channels (31). In most cases, alcohol affects these
targets only at high, suprapharmacologic concentrations. How-
ever, certain GABAA-receptor isoforms are exquisitely sensitive
to alcohol so that functionally relevant effects can occur at con-
centrations within the intoxicating range (32,33).

Since 1980, it has been known that alcohol can positively
modulate the activity of some GABAA receptors (34,35), but
the importance of this finding was questioned because of incon-
sistency in the results from different laboratories and variability
among brain regions. In addition, in experiments with recombi-
nant GABAA receptors, low concentrations of GABA were not
found to affect the most abundant GABAA-receptor isoforms,
which contain the γ 2 subunit. Recently, however, it has been

discovered that GABAA receptors containing the δ subunit, in
particular α4β2δ (36) and α6β2δ (37) receptors, are exception-
ally sensitive to ethanol. Because δ subunit–containing GABAA

receptors have a highly specific regional distribution, the lack
of uniformity in the experimental results is now understand-
able. Indeed, brain regions that express δ subunits, including
the cerebellum, cortical areas, thalamic relay nuclei, and brain-
stem (38), are among those that are recognized to mediate the
intoxicating effects of alcohol. Mody (39) has proposed that
such δ subunit–containing GABAA receptors are located largely
perisynaptically or extrasynaptically, where they mediate tonic
inhibition of neurons by ambient GABA. The functional role
of tonic GABA current is still obscure (40), but the current
could act to reduce network oscillations (41). It is interesting
to speculate that extrasynaptic GABAA receptors may be acti-
vated by spillover of GABA when GABAergic interneurons are
intensely activated, such as during a seizure discharge, thus pro-
ducing negative feedback. Potentiation of extrasynaptic GABA
receptors likely contributes to the anticonvulsant activity of
ethanol, including its protective activity against alcohol with-
drawal seizures.

Alcohol dependence—the existence of spontaneous behav-
ioral disturbances that are produced by alcohol removal and
suppressed by alcohol replacement—underlies the alcohol with-
drawal syndrome. The mechanisms of alcohol dependence are
less well understood than are those responsible for acute intoxi-
cation. However, it now appears that compensatory adaptation
of GABAA receptors to prolonged ethanol exposure plays a crit-
ical role in alcohol dependence (42–44). Among the possible
adaptive mechanisms, downregulation of GABAA receptors, as
a result of decreases in the surface expression of α1 (45,46) or
γ 2 (47) subunits, is emerging as an important candidate. In-
deed, prolonged ethanol exposure has been shown to increase
the endocytic internalization of α1 subunit–containing recep-
tors in clathrin-coated vesicles (48). The number of GABAA

receptors in the postsynaptic density correlates directly with in-
hibitory synaptic strength. Thus, when alcohol is withdrawn
and its potentiating effects are no longer present, the reduction
in synaptic GABAA receptors is associated with impaired in-
hibitory tone, predisposing to withdrawal seizures. The mech-
anisms responsible for altered GABAA-receptor trafficking in
response to prolonged alcohol exposure are not known. How-
ever, it has been proposed that enhancement of tonic GABA
current could play a role (40).

In addition to decreases in α1- or γ 2-subunit expression
that occur with prolonged ethanol exposure, abrupt discontin-
uation of alcohol leads to a rapid increase in the abundance of
α4 subunits (47,49). Inhibitory synaptic currents mediated by
GABAA receptors containing the α4 subunit exhibit markedly
faster decay, leading to reduced charge transfer and decreased
inhibitory function. Enhanced seizure susceptibility is observed
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in animals with increased α4-subunit expression (50,51). Thus,
alcohol withdrawal is associated with reduced density of synap-
tic GABAA receptors as well as alterations in GABAA-receptor
subunit composition that lead to reduced inhibitory efficacy;
both effects would be expected to predispose to seizures. Indeed,
susceptibility to alcohol withdrawal seizures has been associated
with a loss of GABA-mediated inhibition (52,53).

Compensatory upregulation of NMDA and kainate re-
ceptors (54) as well as calcium channels (55,56) also have been
implicated in alcohol dependence and withdrawal seizures. For
example, the inhibitory effects of ethanol on NMDA receptors
(24,25) leads to upregulation in the number of NMDA recep-
tors in many brain regions, which may be an additional fac-
tor in the susceptibility to alcohol withdrawal seizures (57,58).
The relevance of this mechanism is highlighted by the fact that
NMDA-receptor antagonists are highly effective anticonvul-
sants in animal models of alcohol withdrawal seizures (59).

Anticonvulsant Drug Pharmacology of Alcohol
Withdrawal Seizures

Up to one third of patients with significant alcohol withdrawal
may experience alcohol withdrawal seizures. Although seizures
in this setting are usually self-limited, they can be associated with
status epilepticus and, therefore, are potentially serious (60). In
the United States, benzodiazepines are considered the drugs of
choice to treat alcohol withdrawal and to prevent the occur-
rence of seizures (61,62). In Europe, carbamazepine, chlorme-
thiazole, and valproate are often used (63,64). Although ben-
zodiazepines are protective in some animal models of alcohol
withdrawal seizures (65,66), they do not exhibit high potency
(Table 1). The relatively modest activity of benzodiazepines is
not surprising because alcohol withdrawal is associated with in-
creases in α4 subunit–containing GABAA receptors, which are
benzodiazepine insensitive (67,68). Nevertheless, clinical expe-
rience demonstrates that benzodiazepines do reduce the risk of
recurrent seizures in patients with an alcohol withdrawal seizure
(62), so that in practice, no complete benzodiazepine resistance
occurs. However, GABAA-receptor modulators, other than ben-
zodiazepines, might be superior therapeutic agents. Chlorme-
thiazole is a positive modulator of GABAA receptors, which
has high efficacy in enhancing GABAA receptors containing α4
subunits (69) and has been shown to protect transiently against
alcohol withdrawal seizures in mice withdrawn from exposure
to inhaled ethanol (70). Although chlormethiazole may be a
preferred agent from a theoretical point of view, it is not cur-
rently registered for sale in the United States.

As shown in Table 1, the sodium channel–blocking
antiepileptic drugs carbamazepine and phenytoin are weak or
ineffective in rodent models of alcohol withdrawal seizures,
which corresponds with their lack of effectiveness in many other

TABLE 1. Potencies of Anticonvulsant Substances for
Protection in Rodent Alcohol Withdrawal Seizure Models

ED50 (mg/kg)

Audiogenic Handling-induced
Substance seizures (rat) convulsions (mouse)

GABAA-receptor Modulators
Diazepam NE∗ 20†

Lorazepam ∼1‡

Chlormethiazole ∼100§

Sodium-channel Modulators
Phenytoin 50‖ NE¶

Carbamazepine 150∗∗ NE††

Antiepileptic Drugs: Other Antiepileptic Drugs
Gabapentin ∼50 (mouse)‡‡

Valproic acid 300§§

NMDA-receptor Antagonist
Dizocilpine (MK-801) 0.33‖‖ 0.1††

Adapted from N’Gouemo and Rogawski (9), with permission.
ED50, median effective dose; NE, not effective.
∗Little et al. (91); †Crabbe (92); ‡Becker and Veach (66); §Green et al. (70);

‖Chu (93); ¶Gessner (94); ∗∗Chu (95); ††Grant et al. (59); ‡‡Watson et al. (80);
§§Goldstein (73); ‖‖Morrissett et al. (96).

types of generalized seizures. In line with results from animal
studies, there is little evidence that carbamazepine prevents al-
cohol withdrawal seizures and delirium in humans, although it
may be useful to treat alcohol craving (1). Similarly, phenytoin
is not effective in protecting against the occurrence of seizures in
withdrawing alcoholics (71,72). Valproate is protective against
alcohol withdrawal convulsions in mice (73). The intravenous
formulation is gaining acceptance in the clinical management
of status epilepticus so that it could potentially be used in pro-
phylaxis against alcohol withdrawal seizures. Increasing interest
is expressed in the potential of gabapentin as a treatment for
alcohol withdrawal (74–78) and of topiramate in alcohol de-
pendence (79). Animal studies confirm that both drugs have
protective activity against ethanol withdrawal seizures (80,81),
and evidence from a preliminary clinical trial suggests that top-
iramate is effective in preventing seizures in human subjects
undergoing withdrawal (82).

Multiple Detoxifications Kindle Susceptibility to
Alcohol Withdrawal Seizures

The severity of alcohol withdrawal symptoms progressively in-
creases over years of alcohol abuse, and repeated detoxifica-
tions augment the likelihood of alcohol withdrawal seizures
(83,84). Similarly, studies in rodents have shown that repeated
alcohol withdrawal experiences increase the severity and du-
ration of subsequent withdrawal seizures (85,86). These ob-
servations have led to the view that alcohol withdrawal causes
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permanent epileptogenic changes in brain systems relevant to
ethanol withdrawal seizures—a type of kindling phenomenon.
Indeed, in accordance with the central role of the IC in trigger-
ing alcohol withdrawal seizures, multiple alcohol withdrawal
episodes in rats facilitate the development of IC kindling
(87,88). There is no recognized treatment to slow or prevent this
kindling process. In animals, benzodiazepines have yielded vari-
able effects, in some cases slowing withdrawal-induced kindling,
and in other cases, causing paradoxical worsening (65,66,89).
Whether other agents used in the treatment of alcohol with-
drawal have antiepileptogenic potential remains to be deter-
mined.

Conclusions

In the past several years, dramatic advances have been made
in understanding the short- and long-term effects of alcohol
on the central nervous system. These advances have provided
new insight into the pathophysiology of alcohol withdrawal
seizures. In contrast to epileptic seizures, alcohol withdrawal
seizures originate in brainstem systems and involve unique cellu-
lar and molecular mechanisms. Older antiepileptic drugs, such
as phenytoin and carbamazepine, are not useful in the prophy-
laxis of alcohol withdrawal seizures, and even benzodiazepines,
the current mainstay of therapy in the United States, may not
be optimal. Newer agents, such as chlormethiazole, topiramate,
gabapentin, and valproate are promising, but validation in con-
trolled clinical trials is necessary. The emerging understanding
of the neurobiology of alcohol withdrawal suggests additional
treatment approaches. For example, because NMDA-receptor
antagonists are highly effective in animal models of alcohol
withdrawal seizures (59) and, in addition, have antiepilepto-
genic activity in kindling models (90), it will be of interest to
determine whether such agents will be clinically useful in pro-
phylaxis against acute withdrawal seizures or in the kindling
that occurs with multiple detoxifications.

Acknowledgment

I thank Prosper N’Gouemo for insights into the physiology of
alcohol withdrawal seizures.

References

1. Bayard M, J, Hill KR, Woodside J Jr. Alcohol withdrawal syn-
drome. Am Fam Physician 2004;69:1443–1450.

2. Crews FT, Morrow AL, Criswell H, Breese G. Effects of ethanol
on ion channels. Int Rev Neurobiol 1996;39:283–367.

3. Deitrich RA, Erwin VG. Pharmacological Effects of Ethanol on the
Nervous System. Boca Raton, FL: CRC Press, 1996.

4. Nevo I, Hamon M. Neurotransmitter and neuromodulatory
mechanisms involved in alcohol abuse and alcoholism. Neurochem
Int 1995;26:305–336 (discussion 337–342).

5. Hillbom M, Pieninkeroinen I, Leone M. Seizures in alcohol-
dependent patients. CNS Drugs 2003;17:1013–1030.

6. Kosten TR, O’Connor PG. Management of drug and alcohol
withdrawal. N Engl J Med 2003:348:1786–1795.

7. Freedland ES, McMicken DB. Alcohol-related seizures, Part I:
pathology, differential diagnostic, and evaluation. J Emerg Med
1993;11:463–473.

8. Mattson RH. Seizures associated with alcohol use and alcohol
withdrawal. In: Epilepsy:Diagnosis and Management (Feldman B,
ed.) Boston: Little Brown, 1983; 325–332.

9. N’Gouemo P, Rogawski MA. Alcohol withdrawal seizures. In:
Models of Seizures and Epilepsy (Pitkänen A, Schwartzkroin PA,
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